Brains: 2 species, similar acts, different mechanisms

This image shows Giant Nudibranch, Dendronotus iris [Credit: Courtesy of Ralph and Dale Marie Gonzales]

Atlanta: Scientists at Georgia State University have rewired the neural circuit of one species and given it the connections of another species to test a hypothesis about the evolution of neural circuits and behaviour. Neurons are connected to each other to form networks that underlie behaviours. Dr Akira Sakurai and Dr Paul Katz of Georgia State’s Neuroscience Institute study the brains of sea slugs, more specifically nudibranchs, which have large neurons that form simple circuits and produce simple behaviours.

In this study, they examined how the brains of these sea creatures produce swimming behaviours. They found that even though the brains of 2 species — the giant nudibranch and the hooded nudibranch — had the same neurons, and even though the behaviours were the same, the wiring was different.

The researchers blocked some of the connections in the giant nudibranch using curare, a paralyzing poison used on blow darts by indigenous South Americans. This prevented the brain of the giant nudibranch from producing the pattern of impulses that would normally cause the animal to swim. Then, they inserted electrodes into the neurons to create artificial connections between the brain cells that were based on connections from the hooded nudibranch. The brain was able to produce rhythmic, alternating activity that would underlie the swimming behaviour, showing these two species produce their swimming behaviour using very different brain mechanisms.

The findings are published in the journal Current Biology.

“Behaviours that are homologous and similar in form would naturally be assumed to be produced by similar neural mechanisms,” said Katz, co- of the study and a Regent’s in the Neuroscience Institute at Georgia State. “This and previous studies show that connectivity of the neural circuits of two different species of sea slugs differ substantially from each other despite the presence of homologous neurons and behaviours. Thus, the evolution of microcircuitry could play a role in the evolution of behaviour.”

The study’s results are significant for several reasons. First, they show that over the course of evolution, behaviours might be conserved, but the underlying neural basis for the behaviours could shift.

In addition, other work by these researchers and Katz’s lab has underscored the conclusion that neurons are conserved, but differ in function across species. This has implications for extrapolating results across species in general and means caution must be taken in assuming that neural mechanisms are conserved even though brain regions and behaviours are present.

Sakurai is the first of the study and a research scientist in the Neuroscience Institute at Georgia State.

The research was funded by the National Science Foundation.

The researchers also recently published results from similar work in the Journal of Neurophysiology. They reported that neural connectivity between the same neurons in two different species of sea slugs varies independently of behaviour and the evolutionary of an organism.

Story Source:

Materials provided by Georgia State University. Note: Content may be edited for style and length.

Journal Reference:

  1. Akira Sakurai, Paul S Katz. Artificial Synaptic Rewiring Demonstrates that Distinct Neural Circuit Configurations Underlie Homologous Behaviours. Current Biology, 2017 DOI: 10.1016/j.cub.2017.05.016

Cite This Page:

Georgia State University. “Neuroscientists rewire brain of one species to have connectivity of another.” ScienceDaily. ScienceDaily, 1 June 2017.
Previous articleमैं कपिल विवाद से बाहर हूँ — कुमार विश्वास
Next articleISRO lifts heaviest satellite using its heaviest rocket